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1 Introduction

There is an almost absolute consensus among the particle physics community that unknown

physics must exist at energies of around the TeV. Indeed, the minimal Higgs mechanism,

so far completely untested, is quite unlikely to be the true mechanism for electroweak

symmetry breaking; and even if it were, an additional explanation should be provided for

the stabilization of the electroweak scale. Another indication of new physics around these
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scales is given by, for example, the dark matter problem. Low-energy supersymmetry is

a leading candidate to fill that gap since it provides natural and simple explanations to

those conundrums.

However, over the last decade, two other things have become clear. First, that the

structure of flavor symmetry breaking of the Standard Model is a very peculiar one, and

second, that, quite unexpectedly, flavor physics experiments confirm it to great accuracy.

Indeed, any new physics model one can think of leads naturally to violent flavor breaking,

and the experimental limits on flavor-changing neutral currents (FCNC’s) are among the

most stringent constraints that any model must satisfy.

The Minimal Supersymmetric Standard Model (MSSM) is no exception: an enormous

set of new flavor violating parameters arise from its supersymmetry-breaking sector, which

in the quark sector can be understood as a general misalignment between quark and squark

mass matrices. More specifically, a simultaneous flavor rotation of quark and squark fields

diagonalizing the Yukawa matrices leads to the so called super-CKM basis, in which no

tree-level FCNC couplings are present. But in this basis the squark mass matrix M2 is not

generally diagonal, and an extra rotation of the squark fields is necessary to diagonalize

this matrix, introducing strong interaction flavor violating couplings. Therefore, SUSY

contributions to flavor violating observables mediated by strong interactions will easily

compete with the SM contributions, which are driven by weak interactions, and well tested

experimentally. Flavor constraints on these flavor violating parameters have been studied

extensively, and the conclusion to be taken from those studies is, basically, that it is quite

difficult to reconcile the relatively low SUSY masses required by naturalness with a generic

flavor structure of the soft breaking terms.

A solution to this problem is to assume that the structure of flavor violation of the

new physics respects the hypothesis of Minimal Flavor Violation (MFV), by virtue of which

the Yukawa couplings are the only source of flavor symmetry breaking. However, this is

quite a pessimistic scenario for new physics searches in the quark sector, and it is useful

for many purposes to go beyond it. Indeed, present indications of new physics in Bd,s and

K processes [1–3] seem to require a departure from MFV.

In the MSSM, a suitable approach for phenomenological studies that takes into consid-

eration all these issues, is to assume that squark masses are very nearly degenerate. This

case is parametrized by a squark mass matrix of the form (M2)ij = M2
s (1 + δ)ij , where

Ms is an “average” squark mass, and δ is a matrix with entries much smaller than one.

These small parameters, or mass insertions, parametrize the departure from MFV, and

constraints on their values derived from flavor observables provide valuable information

for model building. They are usually treated as expansion parameters, which at leading

order (linear and quadratic in δ for ∆F = 1 and ∆F = 2 processes respectively), define

what is coventionally know as the Mass Insertion Approximation (MIA) [4]. Strong bounds

have been derived for these quantities from FCNC processes [5–8] and vacuum stability

requirements [9, 10] as well as from charged-current processes [11].

However, it is also of interest to consider other scenarios with non-degenerate squark

masses. For example, it has been argued that a “hierarchical” setup in which the first two

generations of squarks are much heavier than the rest of the SUSY spectrum (lying near
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the electroweak scale), can satisfy naturalness criteria [12]. In this framework, correlation

patterns between ∆F = 1 and ∆F = 2 observables can be quite different from the ones

in the degenerate case. Indeed, as shown in ref. [13], in these scenarios the bounds from

B → Xsγ can be partially evaded, allowing for a large Bs mixing phase. This would be of

great relevance if the experimental indication for such a large phase [2, 14, 15] is confirmed.

In order to perform phenomenological studies of these scenarios, corresponding cal-

culations of flavor violating processes have to be performed. Here we focus on ∆F = 2

processes, that is, K− K̄, D− D̄ and Bd,s− B̄d,s mixing. These low energy observables are

more conveniently computed in the framework of an effective theory in which heavy modes

have been integrated out. The most general effective hamiltonian relevant for ∆F = 2 pro-

cesses is given in eq. (2.1), where the Wilson coefficients Ci contain the information from

heavy modes. Then the observables are expressed as functions of the Wilson coefficients

and the matrix elements of the operators, and arise from the ∆F = 2 amplitude in the

effective theory:

Aeff =
∑

i

Ci 〈Oi〉 =
∑

ij

Ci

(

δij +
αs

4π
rij +O(α2

s)
)

〈Oj〉(0) , (1.1)

where we have written the matrix elements of the operators in terms of tree level matrix

elements 〈O〉(0). The matrix elements must be computed using some non-perturbative

approach, for example in the lattice. The SUSY contributions are encoded inside the

Wilson coefficients, which are evaluated by matching the full theory (MSSM) onto the

effective theory at some matching scale µ. According to the renormalization group (RG)

prescription for the resummation of large logarithms, the matching scale µ must be close

to the SUSY scale, and the scale at which matrix elements are computed must be close to

a relevant mass scale in the effective theory (for example mb in the case of B− B̄ mixing),

and the Wilson coefficients at the matching scale must be used as initial conditions for

the RG evolution that provides the Wilson coefficients at the low scale. This evolution is

governed in particular by the anomalous dimensions of the operators.

Leading order (LO) strong interaction matching conditions in the MSSM have been

computed in refs. [16–18], and arise from the squark-gluino box diagrams shown in ap-

pendix A.1. The corresponding next-to-leading order (NLO) corrections arise from the two

loop diagrams shown in appendices A.2, A.4, and have been computed in ref. [19] within

the Mass Insertion Approximation. The anomalous dimension matrix for the complete set

of operators (eq. (2.2)) has been computed at NLO in QCD in refs. [20, 21].

The purpose of this paper is to present the computation of the NLO matching condi-

tions beyond the MIA, in the presence of arbitrary soft terms, and in particular for arbitrary

squark mass splittings. The motivation for a NLO determination of the matching condi-

tions is three-fold. First, LO matching conditions are both scale- and scheme-independent,

so in order to get scheme independent results and NLO scale invariance it is necessary to

go beyond the leading order. Second, the leading order corrections are proportional to

α2
s. Since at LO neither the renormalization scale or the scheme can be specified for the

strong coupling, LO results show a particularly high uncertainty related to the scheme and

scale ambiguities. Third, this uncertainty is particularly severe due to the large anomalous
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dimensions of the ∆F = 2 operators involved. These uncertainties are largely cured by the

NLO corrections, from about 10-15% to a few percent, as shown explicitly in ref. [19].

The ∆F = 2 amplitude in the MSSM up to NLO can be written as

AMSSM =
∑

i

α2
s

(

F
(0)
i +

αs

4π
F

(1)
i +O(α2

s)
)

〈Oi〉(0) , (1.2)

where F
(0)
i and F

(1)
i are the LO and NLO contributions, and we have factored out a

common α2
s. The matching of the full theory onto the effective theory is performed by

imposing that the effective and MSSM amplitudes are equal at and below a matching scale

µ. An order by order identification of eqs. (1.1) and (1.2) leads to the following formula

for the Wilson coefficients:

Ci = α2
sF

(0)
i +

α3
s

4π
F

(1)
i − α3

s

4π

∑

j

F
(0)
j rji +O(α4

s) . (1.3)

Thus, the NLO matching calculation requires the computation of the matrix r and the

functions Fi. The matrix r is obtained from the renormalization of the operators of the

effective theory, and its computation is described in section 2. This matrix has been

computed before in several renormalization schemes (see refs. [19–21]), and we agree with

their results. The functions Fi are obtained computing the one- and two-loop diagrams in

the MSSM (see appendix A). The details of this computation are described in section 3,

and the functions F
(1)
i obtained here are the main new results of this paper.

Both calculations, the effective and the full theory amplitudes, are carried out in the

NDR scheme (dimensional regularization with anticommuting γ5), with modified minimal

subtraction (MS) of ultraviolet divergencies. Also, we choose massless external quarks with

zero external momenta. This choice of external states introduces infrared (IR) divergencies

from diagrams in which a gluon connects two external legs. We regularize these divergencies

with an unphysical gluon mass λ. While both r and F
(1)
i depend on the external states (and

are therefore IR divergent), this dependence cancels in the Wilson coefficients, as expected.

After describing the computation of the relevant amplitudes, we discuss briefly in

section 4 some issues related to the renormalization of ultraviolet divergencies and the

renormalization scale dependence. In section 5 we mention some of the checks that can be

done to ensure the correctness of the results. In section 6 we show how reduce the exact

results to the MIA and to the MIA with non-degenerate squarks, which allows to compare

our results with those in ref. [19]. Finally, some results are presented in section 7.

Before getting down to brass tacks, we would like to set some notation and specify

some definitions related with rotation and mass matrices beyond leading order. At tree

level, the super-CKM basis is defined by doing a joint rotation in flavor space of quark and

squark fields such as to diagonalize the tree level Yukawa matrices. The resulting squark

mass matrix is not diagonal and defines the tree level mass insertions. In this basis there

are no tree level FCNC’s. This matrix is diagonalized by an additional rotation of the

squark fields,

d̃I
i,L = Γji∗

DL
d̃j , d̃I

i,R = Γji∗
DR
d̃j

ũI
i,L = Γji∗

UL
ũj , ũI

i,R = Γji∗
UR
ũj (1.4)
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where (q̃I
L, q̃

I
R) denote the squark fields in the (tree level) super-CKM basis, and q̃ is the

mass eigenbasis. The rotation matrices ΓL and ΓR are 3 × 6 matrices, and the indices

U,D will be omitted hereon, which raises no confusion. In the mass eigenbasis, tree level

FCNC’s appear; for example a flavor changing q̃i-qj-g̃ vertex is generated with the following

Feynman rule:

− igs

√
2T a(Γij

LPL − Γij
RPR) , (1.5)

where T a are the color matrices and PL,R are the chiral projectors.

At NLO, a subtlety arises because a squark-gluino loop generates a finite flavor-

changing self energy for the quark fields (see figure 2). At this point, one must specify

what is meant by the super-CKM basis at NLO, since the definitions for the mass inser-

tions depend on that choice. We believe that the most natural definition for the super-CKM

basis is the one for which quark fields do not mix at one loop, and tree-level FCNC’s are

absent. In this case the rotation matrices, the mass insertions and the CKM matrix differ

from the tree level ones. This criterium does not coincide with that in ref. [11], but it has no

effect when comparing our results with ref. [19], since this is not an issue in the degenerate

case. A comment in favor of the criterium adopted in ref. [11] is that mass insertions are

directly related with SUSY-breaking parameters in the lagrangian. A further discussion on

this issue is provided in section 4, and the formulae necessary to switch from one criterium

to the other is provided in appendix C.

2 Effective Hamiltonian for ∆F = 2 processes at NLO

The most general effective Hamiltonian for ∆F = 2 processes up to operators of dimension

six can be written as

H∆F=2
eff =

5
∑

i=1

CiOi +

3
∑

i=1

C̃i Õi (2.1)

where Ci are the Wilson coefficients and Oi are the dimension six ∆F = 2 operators. In

four dimensions there are eight independent operators of this type. Here we choose the

following basis:

O1 = s̄αγµPLbα s̄βγ
µPLbβ

O2 = s̄αPLbα s̄βPLbβ

O3 = s̄αPLbβ s̄βPLbα

O4 = s̄αPLbα s̄βPRbβ

O5 = s̄αPLbβ s̄βPRbα (2.2)

where PL,R = (1∓ γ5)/2 are the usual chiral projectors. The operators Õ1,2,3 are obtained

from O1,2,3 by exchanging L↔ R. To simplify the notation throughout the paper we focus

on the case of Bs − B̄s mixing; for the cases of K, D and Bd mixing one should make

obvious replacements of the quark fields.

In order to define the effective Hamiltonian beyond leading order, one must specify a

renormalization scheme. Here we choose to regularize ultraviolet divergencies in dimen-

sional regularization, where d = 4 identities between operators do not hold. This means

– 5 –
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Figure 1. One loop diagrams contributing to the matrix elements of the four-fermion operators in

the effective theory.

that one must complete the effective Hamiltonian with a set of evanescent operators that

vanish in 4 dimensions but can give finite contributions beyond leading order if they are

multiplied by a divergence. The choice of a set of evanescent operators is not unique, and

different sets lead to different subtractions, so specifying this set is necessary to fix the

renormalization scheme. Here we choose the set of evanescent operators given in ref. [21].

By requiring that the matrix elements of evanescent operators vanish in four dimensions

one can omit these operators altogether from the effective Hamiltonian once the renormal-

ization has been performed.

The calculation of the NLO effective Hamiltonian amounts basically to the NLO renor-

malization of the operators. The matrix elements of the bare operators and of the renor-

malized operators are related through the renormalization constants:

〈Oi〉bare =
∑

j

ZijZsZb 〈Oj〉ren =
∑

j

Z ′
ij 〈Oj〉ren (2.3)

where Zs,b are the quark wave function renormalization factors and Zij is the renormaliza-

tion matrix necessary to renormalize properly the operators in the effective theory. The

effective theory amplitude can then be written as

Aeff =
∑

i

Ci 〈Oi〉ren +
∑

i,j

Ci δZ
′
ij〈Oi〉ren (2.4)

where we have written Z ′
ij = δij + δZ ′

ij and the second term contains the counterterms.

In order to obtain the NLO renormalized operators 〈Oi〉ren in terms of tree level matrix

elements 〈Oi〉(0), one must compute the one loop gluonic corrections such as those shown

in figure 1. For UV divergencies we use naive dimensional regularization with modified

minimal substraction (MS-NDR). Moreover, we choose zero external momenta and set the

quark masses to zero. This simplifies the computation but introduces IR divergencies from

the soft gluon region. We regularize this divergencies using a gluon mass λ. The same

IR divergencies should appear in the full theory, and cancel in the matching, providing a

non-trivial check of the calculation.

All the one loop diagrams contributing to the NLO renormalized operators are pro-

portional to the same loop integral, and the amplitude can be written as

Aeff =
∑

ij

Ci

[

δij −
αs

16π

(

1

ǫ̂
+

3

2
− 2 log(λ/µ)

)

Aij + δZ ′
ij

]

〈Oj〉(0) . (2.5)

– 6 –
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The computation then provides the coefficients Aij, which must be extracted up to O(ǫ):

Aij = A0
ij + ǫ̂Aǫ

ij . The sum over j runs over both physical and evanescent operators, the

later giving finite contributions to Aǫ
ij .

The counterterms can now be fixed according to the MS scheme: δZ ′
ij = (αs/16πǫ̂)A

0
ij ,

which provides the leading order anomalous dimension matrix of the operators (2.2) in QCD:

γ ≡ Z−1 dZ

d log µ
=
αs

4π
γ(0) =

αs

4π

[

4CF −
1

2
A0

]

(2.6)

where we have used the well known QCD quark wave function renormalization factor,

Zq = 1− (αs/4πǫ̂)CF . We obtain

γ(0) =















4 0 0 0 0

0 −28/3 4/3 0 0

0 16/3 32/3 0 0

0 0 0 −16 0

0 0 0 −6 2















(2.7)

in agreement with, for example, refs. [19, 26]. The missing 3×3 block corresponding to

the operators Õ1,2,3 has been omitted: they do not mix with the other operators and their

anomalous dimensions are the same as for O1,2,3.

Finally, the NLO amplitude in the effective theory is given by

Aeff =
∑

ij

Ci

(

δij +
αs

4π
rij

)

〈Oj〉(0) (2.8)

rij =
1

4

[(

3

2
− 2 log(λ/µ)

)

A0
ij +Aǫ

ij

]

. (2.9)

For the NLO matrix r we obtain

rij =















−4/3 0 0 0 0

0 −44/3 4/3 0 0

0 16/3 16/3 0 0

0 0 0 −64/3 0

0 0 0 −6 −10/3















log(λ/µ) +















−5 0 0 0 0

0 1/3 −1 0 0

0 −15/2 −25/6 0 0

0 0 0 19/3 −3

0 0 0 −1/2 −7/6















The first term is the IR divergent piece that must cancel in the matching procedure. The

second term is the NLO contribution, and it is scheme dependent: it is valid only in the MS-

NDR scheme. However it can be easily translated to dimensional reduction (DRED) and

Regularization-Independent (RI) schemes by using the formulae in refs. [19, 20]. In fact,

as pointed out in ref. [20], the matrix r can be thought of as defining the renormalization

scheme, and eq. (2.8) as a definition the renormalized operators. The same scheme must

be used in the full theory calculation and in the evaluation of the matrix elements in order

to obtain scheme-independent results for physical amplitudes.

– 7 –
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3 Details of the calculation in the MSSM

The NLO ∆F = 2 amplitude in the MSSM is obtained by computing the one- and two-

loop Feyman diagrams listed in appendix A. The one-loop contributions are the box

diagrams shown in appendix A.1; the computation of these graphs is standard and will

not be reviewed here. Renormalization of the two-loop diagrams requires the inclusion

of these boxes with vertex counterterms, as well as pentagons containing the self-energy

counterterms. These one loop integrals must then be computed up to and including terms

of O(ǫ), which provide the finite scale- and scheme-dependent contributions to the NLO

amplitude. We will come back to this in section 4.

The computation of the two-loop diagrams is done in four steps:

1. Partial fractioning of the denominators and tensor reduction to reduce the Feynman

integrals to a set of scalar integrals with three scalar propagators.

2. Decomposition of the scalar integrals down to a set of one- and two-loop master inte-

grals. These master integrals are known functions of masses and contain divergencies

up to O(1/ǫ2).

3. Cancellation of UV divergencies.

4. Fierz rearrangement and spinor transpositions in order to express the spinor struc-

tures in terms of tree level matrix elements of the operators.

Let us describe in some detail each of these steps.

1. Since we are choosing massless quarks with zero external momenta, there are only two

independent momenta appearing in the Feynman integrals. One can then decompose

the denominators such that each diagram can be expressed as a sum of terms of the

following type

f(m′s)(s̄β Γµ1,ν1,...
α,β,... bα)(s̄γ Γ̄µ2,ν2,...

α,β,... bδ)

∫

dDq1
(2π)D

dDq2
(2π)D

qµ1

1 qµ2

1 · · · qν1

2 q
ν2

2 · · ·
(q21−m2

1)
n1(q22−m2

2)
n2(∆q2−m2

3)
n3

where the f ’s are some functions that depend in general on all the masses appearing

in the Feynman diagram (including the fictitious gluon mass), and ∆q ≡ q1 − q2.

Also, Γ and Γ̄ represent Dirac and color structures. The spinors s and b might be u

or v spinors and they might appear transposed and in different order, according to

the chosen reference order adopted to keep track of the relative signs of interfering

Feynman graphs [22].

The tensor integrals are momentum-independent (again, because external momenta

are zero), so they can be expressed in terms of scalar integrals multiplied by metric

tensors. For example,

∫

dDq1
(2π)D

dDq2
(2π)D

qµ
1 q

ν
2

(· · · ) =
gµν

D

∫

dDq1
(2π)D

dDq2
(2π)D

q1 · q2
(· · · )

– 8 –
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In this way we can express each diagram as a sum of terms of the form

f(m′s)(s̄βΓµ,ν,...
α,β,...bα)(s̄γ Γ̄µ,ν,...

α,β,... bδ)

∫

dDq1
(2π)D

dDq2
(2π)D

(q21)
a (q22)

b (q1 · q2)c
(q21−m2

1)
n1(q22−m2

2)
n2(∆q2−m2

3)
n3

At this point, care must be taken when manipulating the Dirac structures Γ and Γ̄

after contraction with the metric tensors. In particular, in D = 4 − 2ǫ dimensions,

structures of the type (γµγνγλ · · · ) ⊗ (γµγνγλ · · · ) cannot be reduced like in D = 4,

and evanescent structures (of order O(ǫ)) must be introduced. According to the NDR

prescription here adopted, however, one can freely anti-commute the γ5 and use the

usual anti-commutation relations for γ matrices.

2. The resulting scalar integrals can be further reduced to a set of one- and two-loop

master integrals by the method of recurrence relations [23]. This reduction can be

performed automatically using the Mathematica program TARCER [24]. In this way

the scalar integrals can be expressed in terms of various one-loop tadpole integrals

and a single two-loop master integral,

I(m1,m2,m3) ≡
∫

dDq1 d
Dq2

(q21 −m2
1)(q

2
2 −m2

2)(∆q
2 −m2

3)
. (3.1)

The result for this master integral with arbitrary masses is given in ref. [25].

3. Once all the loop integrations have been performed, the resulting expression for the

Feynman diagram consists of a sum of terms of the form
(

A(mg̃, m̃)

ǫ2
+
B(mg̃, m̃)

ǫ
+ C(mg̃, m̃)

)

(s̄β Γµ,ν,...
α,β,... bα) (s̄γ Γ̄µ,ν,...

α,β,... bδ) (3.2)

where A, B and C are some functions of gluino and squark masses. Since in this case

one-loop corrections are finite, no 1/ǫ2 divergencies can appear, so all 1/ǫ2 terms

should (and do) cancel directly. We also get automatic cancellation of 1/ǫ terms

for the diagrams shown in appendix A.4, as it should be. The rest of the diagrams

(those shown in appendix A.3) contain 1/ǫ divergencies that cancel against one-loop

diagrams with vertex and self-energy counterterms. We will discuss the details of the

renormalization in section 4.

4. After all the divergencies have been removed, 4D Fierz identities can be used and

transposition of spinors can be performed to put all spinor and Dirac structures in

suitable form. These structures must then appear in the precise combinations that

constitute the tree level matrix elements of the physical operators, as for example,

2 (ūα
s γµPLv

α
b ) (v̄β

s γµPLu
β
b ) + 2 (ūα

s γµPLv
β
b ) (v̄β

s γµPLu
α
b ) −→ 〈O1〉(0) .

This, however, does not occur for individual diagrams, but only for certain groups of

diagrams (and of course for the amplitude as a whole). Therefore this step provides
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an interesting check of the calculation, in particular of the relative sign between

the different diagrams. The NLO quantities F
(1)
i in eq. (1.2) are then obtained by

summing all the contributions.

4 Renormalization

In order to reduce the ultraviolet divergencies arising from the two-loop graphs, appropriate

counterterms must be introduced. In particular, the squark-quark-gluino vertex, as well

as the quark, squark and gluino wave functions and masses have to be renormalized. For

reference, the relevant renormalization factors in the MS-NDR scheme up to O(αs) are

Zg̃ = 1 +
αs

4π

1

ǫ̂
(Nc + nf ) , Zmg̃

= 1− αs

4π

1

ǫ̂
4Nc ,

Zĝs
= 1− αs

4π

1

ǫ̂
(2Nc + CF ) , Zq̃ = 1 +O(α2

s) , Zq = 1− αs

4π

1

ǫ̂
2CF , (4.1)

which are defined in the usual way. Also, a non-diagonal squark-mass counterterm is

necessary, because at one loop divergent flavor-changing squark propagators are generated.

There are two ways of dealing with this issue: 1) Renormalize the squark rotation matrices

so that non-diagonal squark masses are zero at one loop. In this case all the finite pieces of

the one loop corrections cancel with the renormalized non-diagonal mass insertions, which

are not zero anymore but of order O(αs). 2) Renormalize the non-diagonal squark-mass

parameters minimally, and include the finite pieces of the loop corrections to the flavor-

changing squark propagator. In this case the squark rotation matrices are defined such

that renormalized mass insertions are zero at the matching scale.

We choose the second option, and renormalize the squark mass parameters according

to m2 bare
ij = m2

ij + δmij
, with

δmij
= −αs

4π

1

ǫ̂
2CF

[

(m̃2
i + 2m2

g̃)δij −
∑

k,q,q′

m̃2
k (Γiq∗

L Γkq
L Γkq′∗

L Γjq′

L + Γiq∗
R Γkq

R Γkq′∗
R Γjq′

R )

]

,

mij(µMatching) = 0 . (4.2)

A consequence of all this is that, even though we are working in the basis of diagonal

squark masses, non-diagonal mass parameters do run with the scale and contribute to the

renormalization group equation.

There is an additional issue related with the fact that NDR is a regularization scheme

that breaks supersymmetry. In particular, the coupling gs appearing in the quark-gluon-

gluon vertex and the coupling ĝs that appears in the quark-squark-gluino vertex, receive

different radiative corrections in the NDR scheme. In the effective theory only gs appears,

so when doing the matching it is convenient to have the MSSM amplitude expressed solely

in terms of this coupling. Being this is an O(αs) effect, one can set gs = ĝs in the two-

loop amplitude, but it gives a finite contribution of O(α2
s) from the LO amplitude. At

the end, this effect is corrected for by performing in the one loop amplitude the following

replacement (see [19, 27]),

ĝNDR
s = gNDR

s

(

1 +
αs

4π

4

3

)

. (4.3)
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q q′

q̃

g̃

Figure 2. Flavor changing quark self energies mediated by a squark-gluino loop.

Finally, one must address the wave-function renormalization of the external states.

There are two types of contributions: gluon corrections and squark-gluino corrections, both

contributing a factor of −CF to Zq (see eq. (4.1)). In addition, squark-gluino corrections

contribute finite pieces of two types:

1. Flavor diagonal corrections:

These give a finite contribution to the on-shell quark wave-function renormalization

constant,

δZqL,R
=
αs

4π
CF

[

log(m2
g̃/µ

2)−
∑

k

f(m̃k/mg̃) Γkq∗
L,R Γkq

L,R

]

, (4.4)

with f(x) = (x2 − 4x+ 3− 2x(x− 2) log x)/2(x − 1)2.

2. Flavor changing corrections:

The presence of quark flavor changing squark-gluino loops (see figure 2) can be

handled in two different ways, in relation to two different definitions of the super-

CKM basis:

1) Tree-level definition of the super-CKM basis: This is the usual definition, in

which the tree level Yukawa matrices are diagonal. At one loop, quarks of

different flavors mix through the radiative corrections in figure 2, and one must

include these corrections in the external legs.

2) “On-shell” definition of the super-CKM basis: In this case the quark superfields

are (finitely) renormalized with matrix-valued renormalization factors, that in-

duce a perturbative rotation in flavor space. These counterterms are defined at

each order in perturbation theory such as to render the quark self-energies di-

agonal at the given order, effectively canceling the flavor-changing self-energies

of figure 2.

As mentioned in the introduction, the mass insertions (and the squark rotation ma-

trices) that arise in each scheme represent different quantities. Here we assume an

on-shell definition of the super-CKM basis, and omit the flavor-changing external-leg

corrections in our computations. For completeness, we provide in appendix C the

explicit relationship between squark rotation matrices and mass insertions in both

– 11 –
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definitions. The full results for the NLO Wilson coefficients consistent with the usual

tree-level definition of the super-CKM basis can be obtained by adding an O(αs)

correction to the rotation matrices Γij
L,R in the LO results, as explained in detail in

appendix C.

Once all the renormalization factors have been defined, one can write down explicitly

the renormalization group equation for the Wilson coefficients,




∂

∂ log µ2
+

dαs

d log µ2

∂

∂αs
+

dm2
g̃

d log µ2

∂

∂m2
g̃

+
∑

i,j

d m̃2
ij

d log µ2

∂

∂m̃2
ij

− 1

2
γT



 ~C(µ) = 0 . (4.5)

The renormalization group functions are given by

dαs

d log µ2
= −α

2
s

4π
(3Nc − nf ) ,

dm2
g̃

d log µ2
=
α2

s

4π
m2

g̃ (2nf − 6Nc) , (4.6)

d m̃2
ij

d log µ2
= −αs

4π
2CF

[

(m̃2
i + 2m2

g̃)δij −
∑

k,q,q′

m̃2
k (Γiq∗

L Γkq
L Γkq′∗

L Γjq′

L + Γiq∗
R Γkq

R Γkq′∗
R Γjq′

R )

]

.

Therefore, with the notation of eq. (1.2), the explicit form of the NLO RG-equation reads

∂

∂ log µ2
F

(1)
l = (4.7)

2CF

[

(m̃2
i + 2m2

g̃)δij − m̃2
k (Γiq∗

L Γkq
L Γkq′∗

L Γjq′

L + Γiq∗
R Γkq

R Γkq′∗
R Γjq′

R )
] ∂

∂m̃2
ij

F
(0)
l +

1

2
γ

(0)
il F

(0)
i

where appropriate sums over i, j, k, q, q′ are understood.

5 Checks of the calculation

There are several checks that can be made of the NLO calculation:

1. Cancellation of UV divergencies: All the UV divergencies arising from the two-loop

graphs (specifically those in appendix A.3 must be cancelled by one loop graphs with

the insertions of the counterterms specified by the renormalization factors in eqs. (4.1)

and (4.2).

2. Projection onto tree-level matrix elements: The NLO amplitude must be expressible

in terms of tree-level matrix elements of the physical operators, that is, ANLO =

F
(1)
i 〈Oi〉(0). As mentioned before, this does not happen for individual two-loop

graphs, and provides a check of interference between diagrams.

3. Cancellation of IR divergences: Both the amplitude in the effective theory and the

amplitude in the MSSM depend on log λ, where λ is the gluon mass introduced to

regularize the IR divergencies. This dependence must cancel completely in the match-

ing when combining both amplitudes; that is, F
(1)
i − F (0)

k rki must be IR-finite. This

is a non trivial check involving three completely independent pieces of the calcula-

tion: the matrix r from the renormalization of the effective operators, F
(0)
i from the

one-loop graphs, and F
(1)
i from the two-loop graphs.

– 12 –



J
H
E
P
1
1
(
2
0
0
9
)
0
5
5

4. NLO renormalization scale independence: The RGE (eq. (4.7)) must be fullfilled.

There is a close relationship between cancellation of UV divergencies and fulfillment

of the RGE, but it is nevertheless a convenient check.

We have verified that our results fulfill these requirements. Moreover, a final check

consists in reducing the results to the degenerate MIA and comparing them with the results

obtained in ref. [19]. In the next section we address the issue of how to reduce the exact

results to the MIA and the NDMIA.

6 Reduction to MIA and NDMIA

6.1 Reduction to the mass insertion approximation

Any Wilson coefficient computed in this paper has the structure of a sum of terms of the

following type,

f4(m̃
2
i , m̃

2
j ) · Γis∗

A Γib
B · Γ

js∗
C Γjb

D

f6,1(m̃
2
i , m̃

2
j , m̃

2
k) · Γis∗

A Γib
B · Γ

js∗
C Γjq

D · Γ
kq∗
E Γkb

F

f6,2(m̃
2
i , m̃

2
j , m̃

2
k) · Γis∗

A Γib
B · Γ

js∗
C Γjb

D · Γ
kq∗
E Γkq

F

f8,1(m̃
2
i , m̃

2
j , m̃

2
k, m̃

2
l ) · Γ

iq∗
A Γib

B · Γ
js∗
C Γjq

D · Γks∗
E Γkq′

F · Γ
lq′∗
G Γlb

H

f8,2(m̃
2
i , m̃

2
j , m̃

2
k, m̃

2
l ) · Γ

iq∗
A Γib

B · Γ
js∗
C Γjb

D · Γks∗
E Γkq′

F · Γ
lq′∗
G Γlq

H

(6.1)

where A,B,C, . . . are either L or R, and a sum is understood running over the in-

dices i, j, k, l = d̃L, s̃L, b̃L, d̃R, s̃R, b̃R, and q, q′ = d, s, b, (for f6,2 also q = u, c, t and

k = ũL, c̃L, t̃L, ũR, c̃R, t̃R).

These terms can be translated into functions of the entries of the squark mass matrix

in the super-CKM basis (M2) using the following relations,
∑

i

Γiq∗
A Γiq′

B = δABδqq′ ;
∑

i

m̃2n
i Γiq∗

A Γiq′

B = [(M2)n]AB
qq′ . (6.2)

In the MIA, the diagonal elements in M2 are assumed to be equal to an “average” squark

mass M2
s , and the off-diagonal elements (called mass insertions and denoted by ∆AB

qq′ ), are

assumed to be much smaller than M2
s . In this way, a power expansion on the dimensionless

mass insertions δAB
qq′ ≡ ∆AB

qq′ /M
2
s ≪ 1 can be made, keeping in this case only the leading

terms δ2. The mass eigenvalues are then M2
s (1 + O(δ)), so the functions in eq. (6.1) can

be Taylor-expanded around the average squark mass:

f(m̃2
i , m̃

2
j , . . . ) = f(M2

s ,M
2
s , . . . ) + f (1,0,... )(M2

s ,M
2
s , . . . ) · (m̃2

i −M2
s ) + · · ·

+ f (1,1,0,... )(M2
s ,M

2
s , . . . ) · (m̃2

i −M2
s )(m̃2

j −M2
s ) + · · · (6.3)

Using the relations (6.2) it is easy to see that, for example,

f6,1(m̃
2
i , m̃

2
j , m̃

2
k) · Γis∗

L Γib
R · Γjs∗

L Γjq
L · Γ

kq∗
R Γkb

R = (6.4)

f
(1,0,1)
6,1 (M2

s ,M
2
s ,M

2
s )∆LR

sb ∆RR
sb + f

(1,1,0)
6,1 (M2

s ,M
2
s ,M

2
s )∆LR

sb ∆LL
sb ,

and similar for the other terms.

We have checked that our results, when reduced to the MIA, reproduce exactly the

results in ref. [19].
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6.2 Reduction to the non-degenerate MIA

From the exact results obtained in this paper, one of the most straightforward generaliza-

tions of the MIA results that can be obtained is the case in which the diagonal elements

of the squark mass matrix are non-degenerate. In this case, squark masses can be widely

different while keeping mass insertions small. We call this the Non-degenerate Mass In-

sertion Approximation (NDMIA), in which diagonal masses are non-degenerate but mass

insertions are kept only up to second order.

In order to reduce the terms in eq. (6.1) to the NDMIA, we first expand the functions

around m̃ = 0 and apply the relations (6.2),

f(m̃2
i , m̃

2
j , . . . )·Γiq1∗

A Γ
iq′1
B ·Γ

jq2∗
C Γ

jq′2
D · · · =

∑

n1,n2,...

f (n1,n2,... )(0)

n1!n2! · · ·
[(M2)n1 ]AB

q1q′1
[(M2)n2 ]CD

q2q′2
· · · ,

and then we split the mass matrix in two pieces: M2 = X + ∆, where X is diagonal

and ∆ ≪ X. Then we can resum the series in X, and keep only terms quadratic in ∆.

For example,

f(m̃2
i , m̃

2
j , m̃

2
k) · Γis∗

L Γib
R · Γjs∗

L Γjq
L · Γ

kq∗
R Γkb

L = F
(2)
s̃L

(Xs̃L
,Xb̃R

;Xs̃R
,Xb̃L

)∆LR
sb ∆RL

sb ,

with the function F given by

F
(2)
s̃L

(Xs̃L
,Xb̃R

;Xs̃R
,Xb̃L

) =

f(Xs̃L
,Xs̃L

,Xs̃R
)− f(Xb̃R

,Xs̃L
,Xs̃R

)− f(Xs̃L
,Xs̃L

,Xb̃L
) + f(Xb̃R

,Xs̃L
,Xb̃L

)

(Xs̃L
−Xb̃R

)(Xs̃R
−Xb̃L

)
.

From the NDMIA results one can also recover the Wilson coefficients in the MIA by taking

the limit in which all Xq̃’s are equal. In the non-degenerate case, the dimensionless mass

insertions can be defined normalizing by any of the different squark mass parameters.

It is customary to normalize by some “average” squark mass, although it makes no real

difference as long as in the degenerate limit the definition coincides with the one in the

MIA. We shall understand that they are normalized by the smaller diagonal entry of the

squark mass matrix.

7 Results

The full results for the LO and NLO Wilson coefficients in the MS-NDR scheme are pre-

sented in appendix B. In this section we present some results for the NLO Wilson coef-

ficients in a scenario with a hierarchy of masses, making a comparison with the MIA. In

line with the rest of the paper, we keep focusing on the Bs system for illustration.

The considered scenario is obtained from the mass insertion approximation with non-

degenerate diagonal entries, taking a common mass for the first two generation squarks

(m̃12), different from a common mass for third generation squarks (m̃3). This corresponds

to the “hierarchical” scenario of ref. [13], where m̃3 is assumed to be near the electroweak

scale, and m̃12 is allowed to be heavy, up to several TeV. We therefore denote xh ≡ m̃2
12/m

2
g̃

– 14 –
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Figure 3. Relative importance of the full NLO result with respect to the LO, for C2 and C3, as

a function of xh ≡ m̃2
12/m

2
g̃, where m̃12 is a common mass for first and second generation squarks.

The dashed lines correspond to the degenerate (MIA) scenario. We have chosenmg̃ = µ = 350 GeV,

and 400 GeV for third generation squark masses.

and xl ≡ m̃2
3/m

2
g̃, for heavy and light respectively. Note that m̃12 and m̃3 are related to

the true masses by corrections of O(δ). In this case the mass insertions are normalized to

m̃3, which corresponds to the MIA definition when xh → xl.

The plots in figure 3 illustrate the relative importance of the NLO corrections, as a

function of the mass splitting between the light and heavy squarks. The NLO correction

is typically a ∼ 10% effect in the degenerate case, but its importance increases with the

mass splitting. For heavy squarks of about a TeV, the NLO contribution to C3 can be

up to a ∼ 25% correction. However it should be mentioned that this is true in the NDR

scheme and could vary in other schemes. Also, this depends on the matching scale µ, but

a high sensitivity to µ would be related to large scale ambiguity at LO that is efficiently

reduced at NLO. This means that the NLO contributions are either numerically important,

or they achieve a considerable reduction of theoretical errors, and both situations are not

easily disentangled.

In order to analyze more closely the role of the mass splittings in the NLO corrections,

we consider C1, C4 and C5 as a function xl, for different splittings between xl and xh. This

is shown in figure 4, where the dashed lines correspond to xl = xh (that is, the degenerate

case), and–departing smoothly from that limit– the solid lines show increasing values of

xh/xl. In these plots we take δL,R = δR,L = 0 and mg̃ = µ = 350 GeV. We see that

increasing the heavy scale tends to reduce systematically the size of the NLO contribution,

being largest in the degenerate case.

As mentioned before, this is scheme dependent (although the conclusion might be more

general). In any case, the true impact of the NLO corrections can only be established by

analyzing their effect on observables. A full phenomenological analysis of these correc-

tions and their impact on the bounds on the mass insertions (beyond the mass insertion

approximation) is worthwhile, and will be presented elsewhere.

8 Conclusions

In this paper we have presented the computation of the NLO strong interaction corrections

to the Wilson coefficients relevant for ∆F = 2 processes in the MSSM, beyond the mass
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Figure 4. NLO Wilson coefficients CNLO
1 , CNLO

4 and CNLO
5 as a function of xl ≡ m̃2

3/m
2
g̃, where

m̃3 is a common mass for third generation squarks. The plots are in units of (α3
s/π)δ2LL and

(α3
s/π)δLLδRR for C1 and C4,5 respectively. The different lines correspond to different values of

xh ≡ m̃2
12/m

2
g̃, and range from the MIA case, xh = xl (dashed) to xh = 1.5xl, 2xl, 3xl, 4xl, 5xl, 6xl.

insertion approximation. The full results for the Wilson coefficients in the NDR scheme

are given in appendix B.

These results are relevant for two reasons. First, NLO corrections are necessary to

cancel renormalization scheme and scale dependence from the renormalized operators. This

has the effect of a considerable reduction in the theoretical error. Second, in order to

study scenarios with significant mass splittings one must depart from the degenerate mass

insertion approximation. We have shown some illustrative examples of the effect of mass

splittings in the NLO Wilson coefficients as compared to the degenerate case.

A full phenomenological study of neutral meson mixing incorporating these new cor-

rections will be presented in the future. Corresponding calculations for ∆F = 1 processes

are underway, and when available will allow to perform a complete analysis of correlations

between decay and mixing observables of neutral mesons at NLO in αs.
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A List of diagrams

In this appendix we present the set of one- and two-loop feynman diagrams that contribute

to the MSSM amplitude. We focus on the case of Bs mixing; for other neutral meson

systems the external quarks must be changed. Dashed lines and i, j, k, l denote squarks,

solid arrowed lines and q denote quarks and solid lines without arrows are (majorana)

gluinos. We show all the possible topologies with the different insertions of external quark

flavors, but an additional multiplicity is present interchanging initial and final external

quarks (whenever they correspond to different contractions). For example, at leading
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order there are two diagrams of each of the two topologies shown in appendix A.1, with

appropriate signs given by a reference order of external legs.

A.1 LO diagrams

sss

s bbb

b

ii jj

A.2 IR divergent diagrams

s

s

s

s

s s

ss

s

s

s

s

s

sss

s

s

b

b

b

bbb

b bb

b

b

b

b

b

b bb

b

i

i

iiii

iiij

jjjjj

jjj

A.3 UV divergent diagrams

A.3.1 Vertex corrections

s

sss

s ss

s

s

s

s

s

s

s

s

s

s

s

s
s

ss

s

s

b

b

b b

bb

b

b

b

b

b

b

b

b

b

b

b

bbb

b
bb

b

iiii

iiii

iiii

jjjj

jjjj

jjjj
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A.3.2 Gluino self-energies

ss

s ss
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b b

bb

b

b

b b

bb

b

b

iii

iii

iii

jjj

jjj

jjj

kkk

kkk

qqq

qqq

A.3.3 Squark self-energies

s
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s
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b

b

b

b

b

b

b

b

b

b
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A.4 Finite NLO diagrams
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B Wilson coefficients

In this appendix we present the complete expressions for the Wilson coefficients at NLO

in the MS-NDR scheme. We omit the results for C̃1,2,3, which are obtained from C1,2,3

by exchanging L ↔ R in the squark rotation matrices. The coefficients are split into LO

and NLO:

Ci(µ) = C
(0)
i (µ) + C

(1)
i (µ) , (B.1)

and depend on the matching scale µ through αs, mg̃ and m̃i, and explicitly through

log(m2
g̃/µ

2). The functions depend on the squark masses through the variables xi defined

as xi ≡ m̃2
i /m

2
g̃.

The LO Wilson coefficients are given by

C
(0)
1 (µ) =

α2
s

122m2
g̃

(

8Gij − 22H ij
)

Γis∗
L Γib

L Γjs∗
L Γjb

L

C
(0)
2 (µ) =

α2
s

122m2
g̃

68Gij Γis∗
R Γib

L Γjs∗
R Γjb

L

C
(0)
3 (µ) = − α2

s

122m2
g̃

12Gij Γis∗
R Γib

L Γjs∗
R Γjb

L

C
(0)
4 (µ) =

α2
s

122m2
g̃

[

(

168Gij + 24H ij
)

Γis∗
R Γib

R Γjs∗
L Γjb

L + 44H ij Γis∗
L Γib

R Γjs∗
R Γjb

L

]

C
(0)
5 (µ) =

α2
s

122m2
g̃

[

(

8Gij − 40H ij
)

Γis∗
R Γib

R Γjs∗
L Γjb

L + 60H ij Γis∗
L Γib

R Γjs∗
R Γjb

L

]

(B.2)

where a sum is understood over i, j = d̃L, s̃L, b̃L, d̃R, s̃R, b̃R. The functions G,H are:

Gij =
2xi log xi − x2

i + 1

(xi − 1)2(xi − xj)
+ (xi ↔ xj) H ij =

−2x2
i log xi + 3x2

i − 4xi + 1

(xi − 1)2(xi − xj)
+ (xi ↔ xj)

The NLO coefficient functions are the main result of this paper. They are scheme

dependent; we present the results in the MS-NDR scheme, but can be translated easily to

other schemes using formulae analogous to that presented in ref [19]. The function Li2(x)

denotes the dilogarithm defined in the usual way:

Li2(x) = −
∫ x

0
dt

log(1− t)
t

. (B.3)
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Appropriate sums over indices are understood, in particular q, q′ = d, s, b and Q =

u, d, s, c, b, t, and i, j, k run over left and right-handed squarks of u or d-type depending

on the quark they appear with in the rotation matrix: for example a term containing Γku
L

contains a sum over k = ũL, c̃L, t̃L, ũR, c̃R, t̃R. All dependence on u-type quarks and squarks

come only from diagrams with gluino self-energies. The NLO Wilson coefficients read

C
(1)
1 (µ) =

α3
s

123πm2
g̃

[

(f ij
1 + f ji

1 ) Γis∗
L Γib

L Γjs∗
L Γjb

L + gijk
1,1 Γis∗

L Γib
L Γjs∗

L Γjq
L Γkq∗

L Γkb
L

+gijk
1,2 Γis∗

L Γib
L Γjs∗

L Γjq
R Γkq∗

R Γkb
L + hijk

1 Γis∗
L Γib

L Γjs∗
L Γjb

L (ΓkQ∗
L ΓkQ

L + ΓkQ∗
R ΓkQ

R )

+mijk
1 Γis∗

L Γib
L Γjs∗

L Γjb
L (Γks∗

L Γks
L + Γkb∗

L Γkb
L )

+nijkl
1 (Γiq∗

L Γib
L Γjs∗

L Γjb
L Γks∗

L Γkq′

L Γlq′∗
L Γlq

L + Γiq∗
R Γib

L Γjs∗
L Γjb

L Γks∗
L Γkq′

R Γlq′∗
R Γlq

R)

+pijkl
1 (Γiq∗

L Γib
L Γjs∗

L Γjq
L Γks∗

L Γkq′

L Γlq′∗
L Γlb

L − Γiq∗
L Γib

L Γjs∗
L Γjq

L Γks∗
L Γkq′

R Γlq′∗
R Γlb

L

−Γiq∗
R Γib

L Γjs∗
L Γjq

R Γks∗
L Γkq′

L Γlq′∗
L Γlb

L + Γiq∗
R Γib

L Γjs∗
L Γjq

R Γks∗
L Γkq′

R Γlq′∗
R Γlb

L)
]

(B.4)

C
(1)
2 (µ) =

α3
s

123πm2
g̃

[

(f ij
2 + f ji

2 ) Γis∗
R Γib

L Γjs∗
R Γjb

L + gijk
2 Γis∗

R Γib
L Γjs∗

R Γjq
L Γkq∗

L Γkb
L

+gikj
2 Γis∗

R Γib
L Γjs∗

R Γjq
R Γkq∗

R Γkb
L + hijk

2 Γis∗
R Γib

L Γjs∗
R Γjb

L (ΓkQ∗
L ΓkQ

L + ΓkQ∗
R ΓkQ

R )

+mijk
2 Γis∗

R Γib
L Γjs∗

R Γjb
L (Γks∗

R Γks
R + Γkb∗

L Γkb
L )

+nijkl
2 (Γiq∗

L Γib
L Γjs∗

R Γjb
L Γks∗

R Γkq′

L Γlq′∗
L Γlq

L + Γiq∗
R Γib

L Γjs∗
R Γjb

L Γks∗
R Γkq′

R Γlq′∗
R Γlq

R)

+pijkl
2 (Γiq∗

L Γib
L Γjs∗

R Γjq
L Γks∗

R Γkq′

L Γlq′∗
L Γlb

L + Γiq∗
R Γib

L Γjs∗
R Γjq

R Γks∗
R Γkq′

R Γlq′∗
R Γlb

L

−Γiq∗
L Γib

L Γjs∗
R Γjq

L Γks∗
R Γkq′

R Γlq′∗
R Γlb

L − Γiq∗
R Γib

L Γjs∗
R Γjq

R Γks∗
R Γkq′

L Γlq′∗
L Γlb

L)
]

(B.5)

C
(1)
3 (µ) =

α3
s

123πm2
g̃

[

(f ij
3 + f ji

3 ) Γis∗
R Γib

L Γjs∗
R Γjb

L + gijk
3 Γis∗

R Γib
L Γjs∗

R Γjq
L Γkq∗

L Γkb
L

+gikj
3 Γis∗

R Γib
L Γjs∗

R Γjq
R Γkq∗

R Γkb
L + hijk

3 Γis∗
R Γib

L Γjs∗
R Γjb

L (ΓkQ∗
L ΓkQ

L + ΓkQ∗
R ΓkQ

R )

+mijk
3 Γis∗

R Γib
L Γjs∗

R Γjb
L (Γks∗

R Γks
R + Γkb∗

L Γkb
L )

+nijkl
3 (Γiq∗

L Γib
L Γjs∗

R Γjb
L Γks∗

R Γkq′

L Γlq′∗
L Γlq

L + Γiq∗
R Γib

L Γjs∗
R Γjb

L Γks∗
R Γkq′

R Γlq′∗
R Γlq

R)

+pijkl
3 (Γiq∗

L Γib
L Γjs∗

R Γjq
L Γks∗

R Γkq′

L Γlq′∗
L Γlb

L + Γiq∗
R Γib

L Γjs∗
R Γjq

R Γks∗
R Γkq′

R Γlq′∗
R Γlb

L

−Γiq∗
L Γib

L Γjs∗
R Γjq

L Γks∗
R Γkq′

R Γlq′∗
R Γlb

L − Γiq∗
R Γib

L Γjs∗
R Γjq

R Γks∗
R Γkq′

L Γlq′∗
L Γlb

L)
]

(B.6)

C
(1)
4 (µ) =

α3
s

123πm2
g̃

[

(f ij
4,1 + f ji

4,1) Γis∗
L Γib

L Γjs∗
R Γjb

R + (f ij
4,2 + f ji

4,2) Γis∗
L Γib

R Γjs∗
R Γjb

L

+gijk
4,1 (Γis∗

L Γib
R Γjs∗

R Γjq
L Γkq∗

L Γkb
L +(L↔R))

+gijk
4,2 (Γis∗

L Γib
L Γjs∗

R Γjq
L Γkq∗

L Γkb
R +(L↔R))

+gijk
4,3 (Γis∗

L Γib
L Γjs∗

R Γjq
R Γkq∗

R Γkb
R +(L↔R))

+gijk
4,4 (Γis∗

L Γib
R Γjs∗

R Γjq
R Γkq∗

R Γkb
L +(L↔R))

+hijk
4,1 Γis∗

L Γib
L Γjs∗

R Γjb
R (ΓkQ∗

L ΓkQ
L + ΓkQ∗

R ΓkQ
R )

+hijk
4,2 Γis∗

R Γib
R Γjs∗

L Γjb
L (ΓkQ∗

L ΓkQ
L + ΓkQ∗

R ΓkQ
R )

+hijk
4,3 (Γis∗

L Γib
R Γjs∗

R Γjb
L (ΓkQ∗

L ΓkQ
L + ΓkQ∗

R ΓkQ
R ) + (L↔ R))
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+mijk
4,1 (Γis∗

L Γib
L Γjs∗

R Γjb
R (Γks∗

L Γks
L + Γkb∗

L Γkb
L ) + (L↔ R))

+mijk
4,2 (Γis∗

L Γib
R Γjs∗

R Γjb
L (Γks∗

L Γks
L + Γkb∗

R Γkb
R ) + (L↔ R))

+nijkl
4,1 (Γiq∗

L Γib
L Γjs∗

R Γjb
R Γks∗

L Γkq′

L Γlq′∗
L Γlq

L

+Γiq∗
L Γib

R Γjs∗
L Γjb

L Γks∗
R Γkq′

L Γlq′∗
L Γlq

L +(L↔R))

+nijkl
4,2 (Γiq∗

L Γib
L Γjs∗

L Γjb
R Γks∗

R Γkq′

L Γlq′∗
L Γlq

L

+Γiq∗
L Γib

R Γjs∗
R Γjb

L Γks∗
L Γkq′

L Γlq′∗
L Γlq

L +(L↔R))

+pijkl
4,1 (Γiq∗

L Γib
L Γjs∗

R Γjq
L Γks∗

L Γkq′

L Γlq′∗
L Γlb

R − Γiq∗
L Γib

L Γjs∗
R Γjq

L Γks∗
L Γkq′

R Γlq′∗
R Γlb

R

−Γiq∗
R Γib

L Γjs∗
R Γjq

R Γks∗
L Γkq′

L Γlq′∗
L Γlb

R + Γiq∗
R Γib

L Γjs∗
R Γjq

R Γks∗
L Γkq′

R Γlq′∗
R Γlb

R)

+pijkl
4,2 (Γiq∗

L Γib
L Γjs∗

L Γjq
L Γks∗

R Γkq′

L Γlq′∗
L Γlb

R − Γiq∗
L Γib

L Γjs∗
L Γjq

L Γks∗
R Γkq′

R Γlq′∗
R Γlb

R

−Γiq∗
R Γib

L Γjs∗
L Γjq

R Γks∗
R Γkq′

L Γlq′∗
L Γlb

R + Γiq∗
R Γib

L Γjs∗
L Γjq

R Γks∗
R Γkq′

R Γlq′∗
R Γlb

R)
]

(B.7)

C
(1)
5 (µ) =

α3
s

123πm2
g̃

[

(f ij
5,1 + f ji

5,1) Γis∗
L Γib

L Γjs∗
R Γjb

R + (f ij
5,2 + f ji

5,2) Γis∗
L Γib

R Γjs∗
R Γjb

L

+gijk
5,1 (Γis∗

L Γib
R Γjs∗

R Γjq
L Γkq∗

L Γkb
L + (L↔ R))

+gijk
5,2 (Γis∗

L Γib
L Γjs∗

R Γjq
L Γkq∗

L Γkb
R + (L↔ R))

+gijk
5,3 (Γis∗

L Γib
L Γjs∗

R Γjq
R Γkq∗

R Γkb
R + (L↔ R))

+gijk
5,4 (Γis∗

L Γib
R Γjs∗

R Γjq
R Γkq∗

R Γkb
L + (L↔ R))

+hijk
5,1 Γis∗

L Γib
L Γjs∗

R Γjb
R (ΓkQ∗

L ΓkQ
L + ΓkQ∗

R ΓkQ
R )

+hijk
5,2 Γis∗

R Γib
R Γjs∗

L Γjb
L (ΓkQ∗

L ΓkQ
L + ΓkQ∗

R ΓkQ
R )

+hijk
5,3 (Γis∗

L Γib
R Γjs∗

R Γjb
L (ΓkQ∗

L ΓkQ
L + ΓkQ∗

R ΓkQ
R ) + (L↔ R))

+mijk
5,1 (Γis∗

L Γib
L Γjs∗

R Γjb
R (Γks∗

L Γks
L + Γkb∗

L Γkb
L ) + (L↔ R))

+mijk
5,2 (Γis∗

L Γib
R Γjs∗

R Γjb
L (Γks∗

L Γks
L + Γkb∗

R Γkb
R ) + (L↔ R))

+nijkl
5,1 (Γiq∗

L Γib
L Γjs∗

R Γjb
R Γks∗

L Γkq′

L Γlq′∗
L Γlq

L

+Γiq∗
L Γib

R Γjs∗
L Γjb

L Γks∗
R Γkq′

L Γlq′∗
L Γlq

L +(L↔R))

+nijkl
5,2 (Γiq∗

L Γib
L Γjs∗

L Γjb
R Γks∗

R Γkq′

L Γlq′∗
L Γlq

L

+Γiq∗
L Γib

R Γjs∗
R Γjb

L Γks∗
L Γkq′

L Γlq′∗
L Γlq

L +(L↔R))

+pijkl
5,1 (Γiq∗

L Γib
L Γjs∗

R Γjq
L Γks∗

L Γkq′

L Γlq′∗
L Γlb

R

−Γiq∗
L Γib

L Γjs∗
R Γjq

L Γks∗
L Γkq′

R Γlq′∗
R Γlb

R

−Γiq∗
R Γib

L Γjs∗
R Γjq

R Γks∗
L Γkq′

L Γlq′∗
L Γlb

R

+Γiq∗
R Γib

L Γjs∗
R Γjq

R Γks∗
L Γkq′

R Γlq′∗
R Γlb

R)

+pijkl
5,2 (Γiq∗

L Γib
L Γjs∗

L Γjq
L Γks∗

R Γkq′

L Γlq′∗
L Γlb

R

−Γiq∗
L Γib

L Γjs∗
L Γjq

L Γks∗
R Γkq′

R Γlq′∗
R Γlb

R

−Γiq∗
R Γib

L Γjs∗
L Γjq

R Γks∗
R Γkq′

L Γlq′∗
L Γlb

R

+Γiq∗
R Γib

L Γjs∗
L Γjq

R Γks∗
R Γkq′

R Γlq′∗
R Γlb

R)
]

(B.8)
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The coefficients gijk, hijk,mijk, nijkl and pijkl are the following,

gijk
1,1 = 15(Aijk

1 +Ajik
1 )− 25Aijk

5 + 34Aijk
6 + (j ↔ k)

gijk
1,2 =−8(Aijk

3 +Ajik
3 )+81(Aijk

2 +Ajik
2 )+34Aijk

5 −25Aijk
6 +(j↔k)

gijk
2 = 34(Aijk

1 +Ajik
1 −2Aikj

3 −2Akij
3 +Aikj

2 +Akij
2 )−133(Aijk

4 +Aikj
4 )

gijk
3 =−6(Aijk

1 +Ajik
1 −2Aikj

3 −2Akij
3 +Aikj

2 +Akij
2 )+15(Aijk

4 +Aikj
4 )

gijk
4,1 = −11(Aijk

1 +Ajik
1 + 7Aikj

2 + 7Akij
2 )− 133(Aijk

4 +Aikj
4 )

gijk
4,2 = −84(Aijk

3 +Ajik
3 )− 21Aijk

5 − 6Aijk
6 + (j ↔ k)

gijk
4,3 = 36(Aijk

1 +Ajik
1 )− 6Aijk

5 − 21Aijk
6 + (j ↔ k)

gijk
4,4 = −11(Aikj

1 +Akij
1 + 7Aijk

2 + 7Ajik
2 )− 133(Aijk

4 +Aikj
4 )

gijk
5,1 = −15(Aijk

1 +Ajik
1 + 7Aikj

2 + 7Akij
2 ) + 15(Aijk

4 +Aikj
4 )

gijk
5,2 =−4(Aijk

3 +Ajik
3 −18Aijk

2 −18Ajik
2 )+71Aijk

5 −62Aijk
6 +(j↔k)

gijk
5,3 = 12(Aijk

1 +Ajik
1 )− 62Aijk

5 + 71Aijk
6 + (j ↔ k)

gijk
5,4 = −15(Aikj

1 +Akij
1 + 7Aijk

2 + 7Ajik
2 ) + 15(Aijk

4 +Aikj
4 )

hijk
1 = −85(Bijk

1 +Bjik
1 ) + 11(Bijk

2 +Bjik
2 )

hijk
2 = −68(Bijk

1 +Bjik
1 )

hijk
3 = 12(Bijk

1 +Bjik
1 )

hijk
4,1 = −84(Bijk

1 +Bjik
1 )

hijk
4,2 = −12(Bijk

2 +Bjik
2 )

hijk
4,3 = 77(Bijk

1 +Bjik
1 )− 11(Bijk

2 +Bjik
2 )

hijk
5,1 = −4(Bijk

1 +Bjik
1 )

hijk
5,2 = −144(Bijk

1 +Bjik
1 ) + 20(Bijk

2 +Bjik
2 )

hijk
5,3 = 105(Bijk

1 +Bjik
1 )− 15(Bijk

2 +Bjik
2 )

mijk
1 = −2F k(Cij

1 + Cji
1 ) + 11F k(Cij

2 + Cji
2 )

mijk
2 = −17F k(Cij

1 + Cji
1 )

mijk
3 = 3F k(Cij

1 + Cji
1 )

mijk
4,2 = −11F k(Cij

2 + Cji
2 )

mijk
5,2 = −15F k(Cij

2 + Cji
2 )

mijk
4,1 = −21F k(Cij

1 + Cji
1 )− 6F k(Cij

2 + Cji
2 )

mijk
5,1 = −F k(Cij

1 + Cji
1 ) + 10F k(Cij

2 + Cji
2 )

nijkl
1 = −2(Dijkl

1 +Djikl
1 ) + 11(Dijkl

2 +Djikl
2 )

nijkl
2 = −17(Dijkl

1 +Djikl
1 )

nijkl
3 = 3(Dijkl

1 +Djikl
1 )

nijkl
4,2 = −11(Dijkl

2 +Djikl
2 )
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nijkl
5,2 = −15(Dijkl

2 +Djikl
2 )

nijkl
4,1 = −21(Dijkl

1 +Djikl
1 )− 6(Dijkl

2 +Djikl
2 )

nijkl
5,1 = −(Dijkl

1 +Djikl
1 ) + 10(Dijkl

2 +Djikl
2 )

pijkl
1 = 4EilEjk

pijkl
4,1 = −2EijEkl

pijkl
4,2 = 342EikEjl

pijk
2 = −8EilEjk + 171EikEjl − EijEkl

pijkl
5,1 = 6EijEkl

pijk
3 = −8EilEjk − EikEjl + 3EijEkl

pijkl
5,2 = −2EikEjl (B.9)

with the functions Aijk
i , Bijk

i , Cij
i ,D

ijkl
i , Eij

i and F k given by

Aijk
1 =

1

2(xi − 1)2(xj − 1)2(xk − 1)(xi − xj)

[

8(xj − 1)2(xi − xk)
2Li2(1− xi

xk
)

−8(xi − 1)2(xj − 1)2Li2(1− xi)− 8(xj − 1)2(xk − 1)xi log xi

+(xk − 1)(xi − xj)(2xixj − xixk − xjxk − xi − xj + 2xk)(4Li2(1− xk)− log2 xk)

+6(xj − 1)2(xi − xk)
2 log2 xk − 4(xi − 1)(xj − 1)(xk − 1)(xi − xj)

−4(xi − 1)(xj − 1)(xi − xj)xk log xk − 8(xj − 1)2x2
i log xi log xk

]

Aijk
2 = −xi

7
Aijk

1 +
1

14(xi − 1)2(xj − 1)2(xk − 1)(xi − xj)

[

− 8(xj − 1)2(xk − 1)x2
i log2 xi

+(xi − 1)2(xi − xj)(xk − 1)(2xj − xk − 1)(4Li2(1− xk)− log2 xk)

−4(xj − 1)(xi − xj)(x
2
i − 1)xk log xk − 8(xj − 1)2(2xk log xk − 5xk + 5)x2

i log xi

−4(xi − 1)(xi − 6)(xj − 1)(xk − 1)(xi − xj)

]

Aijk
3 =

1

2
Aijk

1 +
1

2
Aijk

2 +
2

(xi − 1)2(xj − 1)(xk − 1)(xi − xj)

[

(xj − 1)(xk − 1)xi log2 xi

+2(xj − 1)(xk log xk − 2xk + 2)xi log xi + (xi − 1)(xi − xj)(xk log xk − 2xk + 2)

]

Aijk
4 =

1

(xi − 1)2(xj − 1)(xk − 1)(xj − xk)

[

8(xk − 1)(xi − xj)
2Li2(1− xi

xj
)

+4(xi − 1)2(xj − xk)Li2(1− xi)− 8(xj − 1)(xk − 1)(2xi − xj − 1)Li2(1− xj)

−(xjx
2
i + xkx

2
i − 2x2

i + 2xixj + 2xixk − 4xixjxk − x2
j + xjx

2
k − x2

k + x2
jxk) log2 xi

+4(xk − 1)(xi − xj)
2 log2 xj − 8(xk − 1)x2

i log xi log xj

+8(xi − 1)(xk − 1)xj log xj

]

Aijk
5 = −1

2
Aijk

4 +
8(xi − 1− xi log xi)xj log xj

(xi − 1)2(xj − 1)(xj − xk)
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Aijk
6 = −xj

2
Aijk

4 +
4(xi−1)2Li2(1−xi)−(xi−xk)

2 log2 xi+4(xk−1)(xi log xi−xi+1)

2(xi−1)2(xk−1)

Bijk
1 =

3

(xi − 1)3(xi − xj)

[

4(xi − xk)
2Li2(1− xi

xk
) + xi(−4(2 + (−3 + xi)xi)xk − xi log xi

2

−4 log xi(xk + xi log xk) + 2 log xk(−2(2 + (−3 + xi)xi)xk + (xi − 2xk

+(3 + (−3 + xi)xi)x
2
k) log xk) + 4(xi − 2xk + (3 + (−3 + xi)xi)x

2
k)Li2(1− xk))

]

Bijk
2 = −(xi − 6)Bijk

1 +
6xixk(xk log2 xk − 2 log xk + 2xkLi2(1− xk)− 2)

xi − xj

Cij
1 = 32

2xi log xi − x2
i + 1

(xi − 1)2(xi − xj)
; Cij

2 = −16
2x2

i log xi − 3x2
i + 4xi − 1

(xi − 1)2(xi − xj)

Dijkl
1 =

64xl(log(m2
g̃/µ

2) + log xl − 1)

(xi − 1)2(xk − 1)3(xi − xj)(xk − xi)

[

2xi(xk − 1)3 log xi

+(xi − 1)((xk − 1)(−xk(xk − 3) + x2
i (xk + 1)− xi(3 + x2

k))− 2(xi − 1)2xk log xk)

]

Dijkl
2 =

32xl(log(m2
g̃/µ

2) + log xl − 1)

(xi − 1)2(xk − 1)3(xi − xj)(xk − xi)

[

− 2x2
i (xk − 1)3 log xi

+(xi − 1)((xk − 1)(xi + x2
i (1− 3xk) + 3xix

2
k − xk(xk + 1)) + 2(xi − 1)2x2

k log xk)

]

Eij =
2xi log xi

(xi − 1)(xi − xj)
− 2xj log xj

(xj − 1)(xi − xj)
; F k =

x2
k − 4xk + 3− 2xk(xk − 2) log xk

4(xk − 1)2

Finally, the functions f ij appearing in the part with four squark rotation matrices are

given by:

f ij
1 =

−1

(xi − 1)3(xj − 1)3(xi − xj)2

{

[

8(xi − xj)(xj − 1)3(−115− 72xi + 399x2
i − 212x3

i

+(−32− 220xi + 74x2
i + 88x3

i ) log xi)
]

log(m2
g̃/µ

2)

+
[

4(xi−xj)xj(2395+xj(−3587+3579xi−(xi − 1)(1189+11xi)xj +3(xi − 1)2x2
j ))

]

+
[

(xj − 1)(−3x6
i + x5

i (53 + 34xj) + x4
i (700 − 1584xj + 773x2

j )

+x3
i (102− 1438xj + 2107x2

j − 1137x3
j ) + x2

i (−72 + 392xj + 422x2
j + 231x3

j − 34x4
j )

+x2
j (120 + 40xj + 50x2

j − 3x3
j ) + xixj(256 − 1082xj + 86x2

j − 16x3
j + 3x4

j ))
]

log2 xi

−2
[

2(xi − 1)(xi − xj)(xj − 1)(−983 + xi(1232 + xi(419 + xi(−50 + 3xi))) + 1890xj

−xi(2263 + xi(838 + 31xi))xj + (−1114 + 5xi(274 + 73xi))x
2
j )

]

Li2(1− xi)

+
[

2(xi−1)(xi−xj)(xj−1)(−3x4
i +x3

i (50+31xj)+xj(120+xj(40+(50−3xj)xj))

+x2
i (40− 80xj + 94x2

j ) + xi(120 + xj(−410 + xj(−80 + 31xj))))
]

Li2(1− xj

xi
)

+
[

− 4(xi − xj)(xj − 1)2(−64(xj − 1) + xi(1563 + xi(−311 + xi(−119 + 3xi))

−1575xj + xi(341 + 98xi)xj + 3(xi − 1)x2
j ))

]

log xi
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+
[

(xi − 1)(xj − 1)(−3x5
i + x4

i (50 + 34xj) + x3
i (40 + xj(−98 + 151xj))

+x2
j (120 + xj(40 + (50 − 3xj)xj)) + 2xixj(32 + xj(−81 + xj(−49 + 17xj)))

+x2
i (120 + xj(−162 + xj(−328 + 151xj))))

]

log xi log xj

}

f ij
2 =

−1

(xi − 1)3(xj − 1)3(xi − xj)2

{

[

8(xi − xj)(xj − 1)3(−515 + 889xi − 437x2
i + 63x3

i

+2(−136 − 5xi + 39x2
i ) log xi)

]

log(m2
g̃/µ

2)

+
[

4(xi − xj)xj(7419 + xj(−12118 + 14097xi + (xi − 1)(−4699 + 1979xi)xj))
]

+
[

2(xj − 1)(−261x5
i + x4

i (547 + 668xj) + xixj(1088 − 3764xj + 1470x2
j + 261x3

j )

+2x3
i (909 − 3013xj + 979x2

j ) + x2
j (146 + 286xj − 261x2

j )

−2x2
i (610 − 809xj − 2156x2

j + 1320x3
j ))

]

log2 xi

−2
[

4(xi − 1)(xi − xj)(xj − 1)(−918 + 261x3
i + (1429 − 682xj)xj

−11x2
i (26 + 37xj) + xi(1325 + 38xj(−47 + 28xj)))

]

Li2(1− xi)

+
[

− 4(xi − 1)(xi − xj)(xj − 1)(261x3
i − 11x2

i (26 + 37xj)

+xi(−146 + (1156 − 407xj)xj) + xj(−146 + xj(−286 + 261xj)))
]

Li2(1− xj

xi
)

+
[

4(xi − xj)(xj − 1)2(544(xj − 1)

+xi(−3823 + xi(1129 + 518xi − 2165xj) + 4341xj))
]

log xi

+
[

− 2(xi − 1)(xj − 1)(261x4
i + x3

i (−286 + 372xj) + 2xixj(139 + 6xj(25 + 31xj))

−2x2
i (73 + 10xj(−15 + 64xj)) + x2

j(−146 + xj(−286 + 261xj)))
]

log xi log xj

}

f ij
3 =

−1

(xi − 1)3(xj − 1)3(xi − xj)2

{

[

8(xi − xj)(xj − 1)3(121 − 187xi + 47x2
i + 19x3

i

+(48 + 62xi − 74x2
i ) log xi)

]

log(m2
g̃/µ

2)

+
[

60(xi − xj)xj(−47 + xj(62 − 45xi + (xi − 1)(15 + 17xi)xj))
]

+
[

− 2(xj − 1)(9x5
i + x4

i (−95 + 68xj) + x2
j(86 − 86xj + 9x2

j )

+2x3
i (143 − 191xj + 57x2

j ) + xixj(192 − 556xj + 346x2
j − 9x3

j )

−2x2
i (22 + 173xj − 412x2

j + 208x3
j ))

]

log2 xi

−2
[

4(xi − 1)(xi − xj)(xj − 1)(162 + 9x3
i + x2

i (−86 + 77xj) + xj(−247 + 94xj)

+xi(−239 + 478xj − 248x2
j ))

]

Li2(1− xi)

+
[

− 4(xi − 1)(xi − xj)(xj − 1)(xi + xj)(86 + 9x2
i + xj(−86 + 9xj)
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+xi(−86 + 68xj))
]

Li2(1− xj

xi
)

+
[

4(xi(557+xi(−395+222xi−49xj)−335xj)−96(xj−1))(xi−xj)(xj−1)2
]

log xi

+
[

− 2(xi − 1)(xj − 1)(9x4
i + x3

i (−86 + 308xj)− 2x2
i (−43 + 74xj + 200x2

j )

+x2
j (86 + xj(−86 + 9xj)) + 2xixj(31 + 2xj(−37 + 77xj)))

]

log xi log xj

}

f ij
4,1 =

−1

(xi − 1)3(xj − 1)3(xi − xj)2

{

[

− 48(xi − xj)(xj − 1)3(167 − 333xi + 237x2
i − 71x3

i

+(112 − 91xi + 50x2
i + x3

i ) log xi)
]

log(m2
g̃/µ

2)

+
[

48(xi−xj)xj(1354+xj(−2225+2616xi+4(xi−1)(−217+97xi)xj +3(xi−1)2x2
j))

]

+
[

− 6(xj − 1)(6x6
i + x5

i (9− 30xj) + x4
i (121 − 254xj + 184x2

j ) + 3x2
j (2 + 5x2

j + 2x3
j )

−2x3
i (719 − 1324xj + 530x2

j + 132x3
j )− xixj(896 − 1750xj + 908x2

j + 45x3
j + 6x4

j )

+2x2
i (339 + 202xj − 1376x2

j + 898x3
j + 15x4

j ))
]

log2 xi

−2
[

12(xi − 1)(xi − xj)(xj − 1)(−620 + 6x4
i + 3x3

i (5− 8xj) + (1219 − 572xj)xj

+x2
i (−50 + (103 − 26xj)xj) + xi(613 + 2xj(−613 + 281xj)))

]

Li2(1− xi)

+
[

− 36(xi − 1)(xi − xj)(xj − 1)(2x4
i + x3

i (5− 8xj) + 2xj + x3
j(5 + 2xj)

+x2
i xj(1 + 8xj) + xi(2 + xj(−12 + xj − 8x2

j)))
]

Li2(1− xj

xi
)

+
[

− 24(xi − xj)(xj − 1)2(−224(xj − 1) + xi(1305 + xi(−610 + xi(35 + 6xi))

−1248xj + 4xi(127 + xi)xj + 6(xi − 1)x2
j ))

]

log xi

+
[

− 6(xi − 1)(xj − 1)(6x5
i + 15x4

i (1− 2xj) + 4x3
i xj(−31 + 16xj)

+3x2
j (2 + x2

j(5 + 2xj))− 2xixj(112 + xj(−126 + xj(62 + 15xj)))

+2x2
i (3 + xj(126 + xj(−77 + 32xj))))

]

log xi log xj

}

f ij
4,2 =

−1

(xi − 1)3(xj − 1)3(xi − xj)2

{

[

4(xi − xj)(xj − 1)3(597 − 1533xi + 1539x2
i − 603x3

i

+2xi(352 − 509xi + 289x2
i ) log xi)

]

log(m2
g̃/µ

2)

+
[

− 32(xi − xj)xj(487 + xj(−754 + 801xi + (xi − 1)(−267 + 47xi)xj))
]

+
[

2(xj − 1)(27x3
j (7 + 9xj)− 27x5

i (−9 + 25xj)− 27xix
2
j(5 + 41xj + 34x2

j )

+x4
i (−880 + 1409xj + 1631x2

j ) + x3
i (65 + 1697xj − 5047x2

j − 1035x3
j )

+5x2
i xj(−143 + 367xj + 505x2

j + 135x3
j ))

]

log2 xi

−2
[

4(xi − 1)(xi − xj)(xj − 1)(709 + 27x3
i (−9 + 25xj) + xj(−1175 + 34xj)
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+x2
i (871− xj(1445 + 722xj)) + xi(−1067 + xj(1405 + 958xj)))

]

Li2(1− xi)

+
[

− 108(xi − 1)(xi − xj)(xj − 1)(−(x2
j (7 + 9xj)) + x3

i (−9 + 25xj)

+x2
i (−7 + (25 − 66xj)xj) + xixj(−2 + 25xj(1 + xj)))

]

Li2(1− xj

xi
)

+
[

8xi(xi − xj)(xj − 1)2(1061 − 453xj + xi(−455− 761xj + xi(274 + 334xj)))
]

log xi

+
[

2(xi − 1)(xj − 1)(27x4
i (9− 25xj) + 27x3

j (7 + 9xj)− xix
2
j(487 + 27xj(34 + 25xj))

+x3
i (189 + xj(−918 + 377xj)) + x2

ixj(−487 + xj(2542 + 377xj)))
]

log xi log xj

}

f ij
5,1 =

−1

(xi − 1)3(xj − 1)3(xi − xj)2

{

[

16(xi − xj)(xj − 1)3(−77− 81xi + 321x2
i − 163x3

i

+(−16− 179xi + 58x2
i + 65x3

i ) log xi)
]

log(m2
g̃/µ

2)

+
[

16(xi−xj)xj(1258+xj(−2015+2292xi+32(xi−1)(−23+8xi)xj +21(xi−1)2x2
j))

]

+
[

− 2(xj − 1)(42x6
i − x5

i (257 + 178xj) + x4
i (−689 + 2414xj − 792x2

j )

+x2
j (−54− 160xj − 215x2

j + 42x3
j ) + 2x3

i (119 + 292xj − 1182x2
j + 660x3

j )

+xixj(−128 + 634xj + 780x2
j + 37x3

j − 42x4
j )

+2x2
i (21− 410xj + 352x2

j − 658x3
j + 89x4

j ))
]

log2 xi

−2
[

4(xi − 1)(xi − xj)(xj − 1)(−756 + xi(787 + xi(178 + xi(−215 + 42xi)))

+1589xj − xi(1382 + xi(143 + 136xi))xj + 2(−610 + xi(551 + 77xi))x
2
j )

]

Li2(1− xi)

+
[

4(xi−1)(xi−xj)(xj−1)(−42x4
i +x3

i (215+136xj)+x
2
i (160+xj(−533+184xj))

+xj(54 + xj(160 + (215 − 42xj)xj))

+xi(54 + xj(−164 + xj(−533 + 136xj))))
]

Li2(1− xj

xi
)

+
[

− 8(xi − xj)(xj − 1)2(−32(xj − 1) + xi(1551 + 7xi(−82 + xi(−13 + 6xi))

−1728xj + 4(253 − 53xi)xixj + 42(xi − 1)x2
j ))

]

log xi

+
[

2(xi − 1)(xj − 1)(−42x5
i + x4

i (215 + 178xj) + 4x3
i (40 + xj(−183 + 32xj))

+x2
j (54 + xj(160 + (215 − 42xj)xj)) + 2x2

i (27 + xj(−18 + xj(59 + 64xj)))

+2xixj(16 + xj(−18 + xj(−366 + 89xj))))
]

log xi log xj

}

f ij
5,2 =

−1

(xi − 1)3(xj − 1)3(xi − xj)2

{

[

− 60(xi − xj)(xj − 1)3(−3(5 + 19xi − 45x2
i + 21x3

i )

+2xi(−32 + 7xi + 13x2
i ) log xi)

]

log(m2
g̃/µ

2)

+
[

96(xi − xj)xj(−157 + xj(214 − 171xi + (xi − 1)(57 + 43xi)xj))
]

+
[

− 30(xj − 1)2(9x5
i − 9x3

j + 9xix
2
j (3 + 2xj) + 5x4

i (−16 + 7xj)
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+x3
i (19 + 134xj − 63x2

j )− x2
ixj(65 + 16xj + 9x2

j ))
]

log2 xi

−2
[

60(xi − 1)(xi − xj)(xj − 1)2(−71 + xi(97 + xi(19 + 9xi − 46xj)

−70xj) + 62xj)
]

Li2(1− xi)

+
[

− 540(xi − 1)2(xi − xj)
3(xj − 1)2

]

Li2(1− xj

xi
)

+
[

24xi(xi − xj)(xj − 1)2(515 − 435xj + xi(−137− 23xj + xi(22 + 58xj)))
]

log xi

+
[

− 30(xi − 1)(xj − 1)(9x4
i (xj − 1)− 9(xj − 1)x3

j + x3
i (3 + xj)(3 + 5xj)

+xix
2
j (5 + 9xj(2 + xj)) + x2

ixj(5 + xj(−74 + 5xj)))
]

log xi log xj

}

C Flavor changing quark self-energies: relationship between the tree-

level and on-shell definitions of the super-CKM basis

In this appendix we elaborate on the relationship between the two different definitions of

the super-CKM basis addressed in section 4.

The flavor changing self-energies of figure 2 can be written as1

Σq′q(p) = ΣRL
q′q (p2)PL + ΣLR

q′q (p2)PR + /p [ ΣLL
q′q (p2)PL + ΣRR

q′q (p2)PR ]. (C.1)

When inserted as external legs, the quark propagator will provide a chiral enhancement

with the chirality-flipping part of the self-energy, and we will keep only this contribution.

Moreover we will expand in the external momentum, which is justified by the fact that the

SUSY masses are much higher than the external quark masses. Then, the self energies we

are interested in are given by

ΣRL,LR
q′q (0) =

2αs

3π
mg̃

∑

k

g(m̃2
k/m

2
g̃) Γkq′∗

R,L Γkq
L,R (C.2)

with g(x) = (1− x+ x log x)/(1 − x).
For the case of Bs mixing, the corrected couplings of the external quarks are,

bα d, s a

iβ

= −igs

√
2 T a

βα [ Πib
LPL −Πib

RPR ] uα
b

sαd, b

a

iβ

= −igs

√
2 T a

βα ūα
s [ Πis∗

L PR −Πis∗
R PL ]

1These corrections can be found in ref. [11]. A discussion of how these can be absorbed into wave-function

counterterms is given in ref. [28].

– 28 –



J
H
E
P
1
1
(
2
0
0
9
)
0
5
5

where, in the approximationmb ≫ ms ≫ md, and keeping only the chirally enhanced terms,

Πib
L = Γid

L ΣLR
db /mb + Γis

L ΣLR
sb /mb (C.3)

Πis∗
L = Γid∗

L ΣRL
sd /ms − Γib∗

L ΣLR
sb /mb (C.4)

and correspondingly for L↔ R.

At this point, we denote by Γ(0) the squark rotation matrices associated with the tree-

level definition of the super-CKM basis, and Γ the rotation matrices in the on-shell case.

At tree-level both coincide; at the one loop level, the relationship between both definitions

is given by

Γib
L = Γ

(0) ib
L + Γid

L ΣLR
db /mb + Γis

L ΣLR
sb /mb

Γis∗
L = Γ

(0) is∗
L + Γid∗

L ΣRL
sd /ms − Γib∗

L ΣLR
sb /mb (C.5)

and correspondingly for L↔ R. The full results for the NLO Wilson coefficients in terms

of Γ(0) –corresponding to the tree-level definition of the super-CKM basis– can be obtained

by making the substitutions of eq. (C.5) in the LO expressions given in eq. (B.2).

In the degenerate MIA case, these corrections cancel. Consider for example the co-

efficient C1 in eq. (B.2). Making the substitutions of eq. (C.5) in the rotation matrices

with index i, and making the reduction to the MIA (see section 6.1) gives, at order α3
s,

two terms:

∑

i

f(xi, . . .)Π
is∗
L Γib

L = −2αs

3π
f(M2

s /m
2
g̃, . . .) g

′(M2
s /m

2
g̃)

M2
s

mg̃mb
δLR
sb (C.6)

∑

i

f(xi, . . .)Γ
is∗
L Πib

L =
2αs

3π
f(M2

s /m
2
g̃, . . .) g

′(M2
s /m

2
g̃)

M2
s

mg̃mb
δLR
sb (C.7)

and both cancel due to the relative signs in eqs. (C.5). The same happens with the other

two terms arising from the Γjq
L , and in the other Wilson coefficients. Therefore, the two

bases coincide in the mass insertion approximation with degenerate squarks.

Finally, the relationship between the mass insertions defined in each basis can be

deduced from eqs. (C.5) and (6.2). As we have just seen, both are equivalent in the

degenerate case. In the non-denerate case, one such relation is (at leading order in the

mass insertion expansion),

∆LL
sb = ∆

(0) LL
sb − 2αs

3π

mg̃

mb

g(Xs̃L
/m2

g̃)− g(Xb̃R
/m2

g̃)

Xs̃L
−Xb̃R

[Xb̃L
−Xs̃L

] ∆LR
sb , (C.8)

with the notation of section 6.2. Analogue relations for other mass insertions can be found

accordingly. From this last relation one can also see that the effect disappears in the

degenerate case.

The effect of the squark-gluino corrections to the external legs (or the difference be-

tween the two definitions of the super-CKM basis), turns out to be numerically important

because of the chiral enhancement. While this article was under revision, a phenomenolog-

ical study of these corrections has been performed in ref. [29], with the conclusion that the
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bounds on some mass insertions (corresponding to the tree-level definition of the super-

CKM basis) are modified considerably. These corrections have obviously no effect on the

phenomenological bounds derived for the mass insertions associated to the on-shell defi-

nition of the super-CKM basis, and in this scheme the NLO corrections are well defined

in the limit of vanishing quark masses. However, it is not a claim of the present paper

that the on-shell scheme is in any way preferred to the tree-level one. In fact, the tree

level scheme might be more convenient if one wishes to relate phenomenological bounds on

these type of low energy processes to specific mechanisms of SUSY breaking. This issue

has been already discussed in ref. [29]. In those cases one can add the flavor-changing

self-energies as given in that paper to our NLO results, or do the substitutions of eqs. (C.5)

or (C.8) directly.
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